Depletion of Spleen Macrophages Delays AA Amyloid Development: A Study Performed in the Rapid Mouse Model of AA Amyloidosis

نویسندگان

  • Katarzyna Lundmark
  • Aida Vahdat Shariatpanahi
  • Gunilla T. Westermark
چکیده

AA amyloidosis is a systemic disease that develops secondary to chronic inflammatory diseases Macrophages are often found in the vicinity of amyloid deposits and considered to play a role in both formation and degradation of amyloid fibrils. In spleen reside at least three types of macrophages, red pulp macrophages (RPM), marginal zone macrophages (MZM), metallophilic marginal zone macrophages (MMZM). MMZM and MZM are located in the marginal zone and express a unique collection of scavenger receptors that are involved in the uptake of blood-born particles. The murine AA amyloid model that resembles the human form of the disease has been used to study amyloid effects on different macrophage populations. Amyloid was induced by intravenous injection of amyloid enhancing factor and subcutaneous injections of silver nitrate and macrophages were identified with specific antibodies. We show that MZMs are highly sensitive to amyloid and decrease in number progressively with increasing amyloid load. Total area of MMZMs is unaffected by amyloid but cells are activated and migrate into the white pulp. In a group of mice spleen macrophages were depleted by an intravenous injection of clodronate filled liposomes. Subsequent injections of AEF and silver nitrate showed a sustained amyloid development. RPMs that constitute the majority of macrophages in spleen, appear insensitive to amyloid and do not participate in amyloid formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusible amyloid oligomers trigger systemic amyloidosis in mice.

AA (amyloid protein A) amyloidosis in mice is markedly accelerated when the animals are given, in addition to an inflammatory stimulus, an intravenous injection of protein extracted from AA-laden mouse tissue. Previous findings affirm that AA fibrils can enhance the in vivo amyloidogenic process by a nucleation seeding mechanism. Accumulating evidence suggests that globular aggregates rather th...

متن کامل

New therapeutic perspectives – amyloid removal

Background In systemic amyloidosis, disease is caused by extracellular accumulation of amyloid fibrils which, unlike other interstitial debris, are not cleared and which disrupt tissue structure and function. Direct removal of amyloid deposits is required to preserve and possibly restore tissue and organ function. We are targeting serum amyloid P component (SAP) for this purpose. SAP normal pla...

متن کامل

Experimental transmission of systemic AA amyloidosis in autoimmune disease and type 2 diabetes mellitus model mice

AA amyloidosis is a protein misfolding disease characterized by extracellular deposition of amyloid A (AA) fibrils. AA amyloidosis has been identified in food animals, and it has been postulated that AA amyloidosis may be transmissible to different animal species. Since the precursor protein of AA fibrils is serum amyloid A (SAA), which is an inflammatory acute phase protein, AA amyloidosis is ...

متن کامل

Acceleration of amyloid protein A amyloidosis by amyloid-like synthetic fibrils.

Amyloid protein A (AA) amyloidosis is a consequence of some long-standing inflammatory conditions, and subsequently, an N-terminal fragment of the acute phase protein serum AA forms beta-sheet fibrils that are deposited in different tissues. It is unknown why only some individuals develop AA amyloidosis. In the mouse model, AA amyloidosis develops after approximately 25 days of inflammatory cha...

متن کامل

Accelerated Resolution of AA Amyloid in Heparanase Knockout Mice Is Associated with Matrix Metalloproteases

AA-amyloidosis is a disease characterized by abnormal deposition of serum A amyloid (SAA) peptide along with other components in various organs. The disease is a complication of inflammatory conditions that cause persistent high levels of the acute phase reactant SAA in plasma. In experimental animal models, the deposited amyloid is resolved when the inflammation is stopped, suggesting that the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013